

Irrigation and Drainage Engineering

(Soil Water Regime Management)

(ENV-549, A.Y. 2024-25)

4ETCS, Master option

Prof. Paolo Perona

Platform of Hydraulic Constructions

Lecture 2-2: Irrigation concepts and basis for network design. Gravity irrigation

Irrigation practice

$$B_n = ETM - Pe - R = K_c ET_o - \alpha P - R$$

B_n: net irrigation water requirements

ETM: maximum evapotranspiration

P_e: effective precipitation

R: reserve available at the start of the calculation period

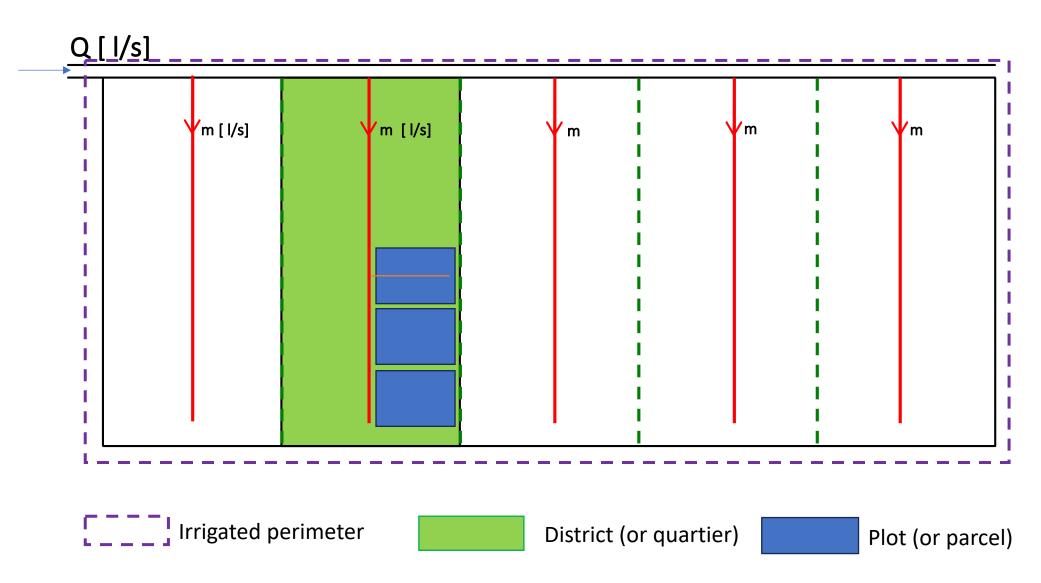
- Irrigation not continuous, but intermittent
- Root zone = reservoir characterised by critical thresholds: θ_{fc} and θ_{twp} (θ_{pwp} if plant under stress)
 - need to define some irrigation practice parameters
 - flow rate to be supplied to the operator
 - dose to be applied
 - frequency of irrigation
 - duration of irrigation, etc.

K_c: crop coefficient

P: total rainfall

ET₀: reference evapotranspiration

 α : rainfall reduction coefficient


Scoping studies

- a study of soil characteristics (to determine the hydrodynamic properties of the soil)
- a hydrological study (to determine the quantities of water available);
- a geological study (particularly necessary for gravity networks, in which water is transported by canals that rest on the ground);
- a topographical survey on an appropriate scale (1/500, 1/1000 or 1/2000, important for sprinkler and localised irrigation);
- a study of the quality of the water (physical, chemical and biological);
- a collection of climatic data and analyses (to assess crop water requirements);
- gathering information on the crops envisaged (i.e., type of crop, rotation, cropping calendar, root depth, resistance to salts, etc.)
- a socio-economic study (nature of the crops grown in the region, degree of adaptability of the farmers, etc)

Geometry of irrigated perimeters

Effective water need

$$B = \frac{B_n}{E}$$

B : effective (or actual) irrigation water need over the considered period (1 month, 1 decade, 1 day, etc.), in mm or m³/ha

 B_n : net water need (result of the water balance), in mm or m^3/ha

E : global irrigation efficiency

The concept of efficiency

Considerable losses occur when water is transported and distributed to the plot (or parcel)

<u>Causes</u>:

- poor management of irrigation practice
- inadequate infrastructures
- inadequate maintenance
- poor institutional organisation
- inadequate training of farmers
- Inadequate timing (e.g., evaporation)
- etc.

World global efficiency: around 40%!

Global efficiency

E = f (type of irrigation, nature of soil, topography, etc.)

$$E = \frac{volume \ of \ water \ used \ by \ plants}{Total \ volume \ of \ water \ delivered \ to \ the \ irrigation \ network}$$

 $E = e_t e$

e_t: water transport efficiency

e : parcel/plot delivery efficiency

Proof

 $e_t = (V_{ir}-V_t)/V_{ir}$ V_t : transport losses, V_{ir} : total delivered water volume

 $e = (V_{ir}-V_t-V_p)/(V_{ir}-V_t) = V_{vég}/(V_{ir}-V_t)$ V_p : losses at the parcel, $V_{vég}$: water volume used by plants

$$E = V_{v\acute{e}g}/V_{ir} = (V_{ir}-V_t)e/(V_{ir}-V_t)/e_t = e e_t$$

Furrow irrigation

Sprinkler irrigation

Indicative values of E:

• Gravity Irrigation:

• Sandy soil 30 – 40 %

• Silt soil 50 – 60 %

• Clay Soil 60 – 65 %

• Sprinkler:

65 < E < 85%

• Micro-irrigation :

85 < E < 95%

Characteristic flowrates

• Mean flowrate Q (m³/s) over the whole period being considered

$$Q = \frac{V}{t} = \frac{B S}{t} = \frac{B S}{N J 3600}$$

Q: flow rate, in m3/s

V: volume of irrigation water to be supplied, in m3

t: network operating time during the period under consideration, in s

B: effective requirements, in m3/ha

• Mean flowrate Q_p in the peak period (m^3/s)

$$Q_p = \frac{V_p}{t} = \frac{B_p S}{N J 3600}$$

S: area to be irrigated, in ha

N: number of hours of daily irrigation

J: number of days of irrigation during the period in question

V_p: volume of irrigation water to be supplied during the peak period, in m3

 B_p : effective requirements for the peak period, in m3/ha

Characteristic flow

Specific peak flowrate q_p (m³/s ha)

$$q_p = \frac{B_p}{N J 3600} = \frac{B_p}{t}$$

t: functioning duration of the irrigaiton networkw at peak flowrate, in s

• Fictitious continuos flowrate q (m³/s ha)

$$q = \frac{B}{T'} = \frac{B}{J' 86400}$$

B: effective needs during the considered period, in m³/ha

T': total duration of the considered period, in s

J': total number of days of the considered period

Peak period, our climate (increasing): 0.3 < q < 1.0 l/s ha

Irrigation dose

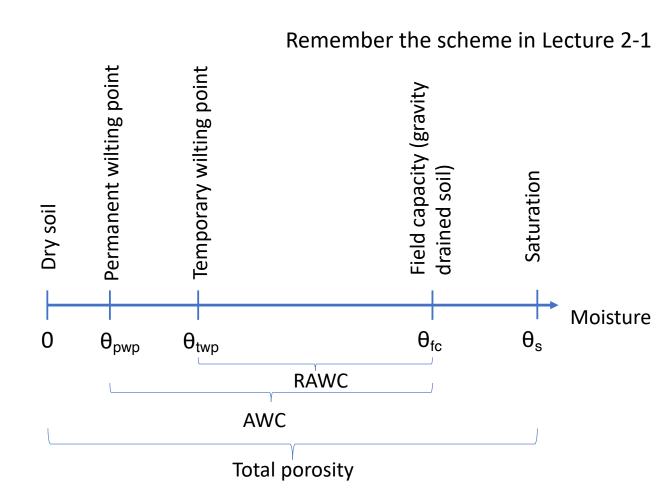
KEY question: How much water (volume/area)?

Maximal irrigation Dose

$$D_n = RAW = (\theta_{fc} - \theta_{twp}) * z_r$$

D_n: maximal net dose, in mm

 θ_{fc} : soil retention capacity (field capacity), in m³/m³


 Θ_{twp} : temporary wilting point, in m³/m³

z_r: root depth zone, in mm

$$D_{b} = \frac{D_{n}}{e}$$

D_b: Maximal actual (gross) irrigation dose, in mm

e : plot (or parcel) delivery efficiency

Irrigation frequency

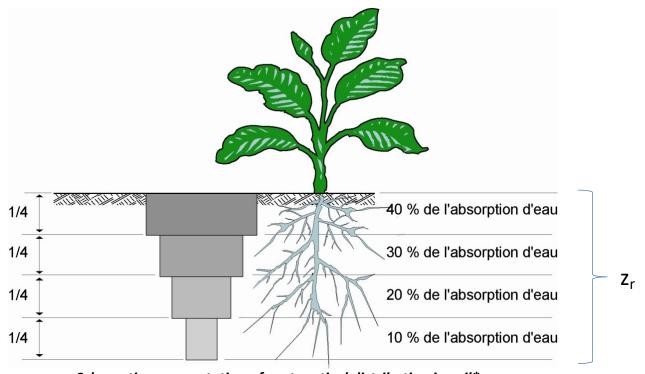
$$n = \frac{B_n}{D_n}$$

KEY question: How often should we provide the irrigation dose?

n : number of gross irrigation doses during the considered period*

B_n: net water needs during the considered period, in mm

 D_n : net irrigation dose, in mm


n is rounded up to the nearest unit and the actual dose is reduced accordingly

* It is indifferent the use of the net or the actual dose, given that both the dose and the needs will be divided by the efficiency at the plot

Example: Net requirements: 100 mm and net dose: 30 mm, i.e.: n = 3.33 n rounded to 4 or more and dose = 25 mm or less (e.g., 20 mm if n is 5)

Rooting depth to consider (general assumption)

In general, irrigation that moistens the soil to a depth of 60 to 120 cm is considered sufficient for most crops.

Schematic representation of root vertical distribution in soil*

Indicative values for z_r :

- Shallow roots (30 60 cm)
- Medium depth (60 120 cm)
- Deep (1 2 m)

vegetable crops, lawns, meadows cereals, tomatoes, carrots fruit trees, vines, cotton

* Notice: We have shown that the vertical density root profile is not necessarily exponential and may show a mode. Actual research tries to take this aspect better into account

Handling flowrate (main d'eau)

Concept: it defines the flowrate allocated to the irrigation manager (usually delivered at the district zone and then distributed to the plots)

Its value depends on many (not only physical) factors:

- the irrigator's skill
- type of irrigation (furrow, submersion, etc.)
- soil type (max infiltration rate) and topography (e.g., slope)
- plots size
- etc.

Typical values range between

10 < m < 100 l/s

Distribution ditch

Duration of irrigaton

It defines the minimal duration needed to water a parcel (or plot), i.e. more precisely:

This is the time required to apply the gross irrigation dose D_b to the surface area S of a plot with a flow rate equal to

the handling flowrate m

$$t = \frac{D_b \ S}{m}$$

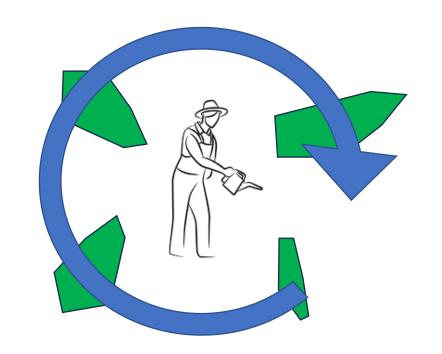
t: time required to apply the dose to the surface S (ha),

in s

D_b: Gross irrigation dose, in m³/ha

S: plot surface, in ha

m: handling flowrate, in m³/s



Types of water allocation

PLATEFORME DE CONSTRUCTIONS HYDRAULIQUES

Essentially, there are two types:

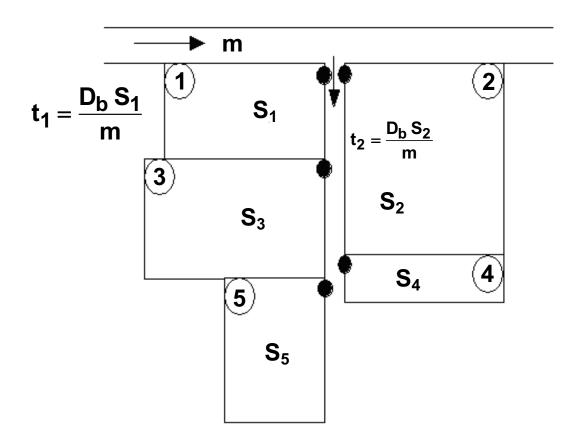
1) Distribution by rotation

2) Distribution on demand

Distribution by rotation

The plots within the irrigated surface (district or quartier) receive water:

- periodically (frequency or number of times, n, to deliver the total need B in doses, D)
- for a given period of time t (depending on their surface area, S)
- according to a given flow rate (handling water, m)


The time interval between two successive waterings of the same plot is called the rotation.

Several plots are supplied by the same canal, which carries a flow rate equal to the amount of water used, e.g., m. From this canal, a maximum surface area can be irrigated, known as a district (or quartier).

The effective duration of irrigation for a district during a rotation is the water turnover.

Distribution by rotation

Surface of a district (or quartier) S' (ha)

Maximum surface area that can be watered from a canal carrying the handling flow m

$$S' = \frac{m}{q_p}$$

m: handling flow, en l/s

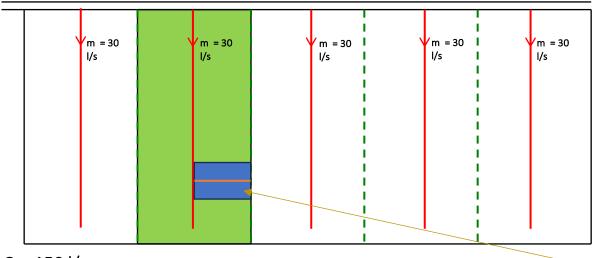
q_p: specific peak flowrate, en l/s ha

Volume d'eau V_p nécessaire pour arroser une surface S' en période de pointe : $V_p = B_p S$

Volume of water V available in the canal during the peak period : $\mathbf{V} = \mathbf{m} \mathbf{t}$

t: duration of canal functioning during the peak period, in s

Maximum surface area S' that can be watered at peak times from a canal fed by a handling flow (Vp = V):

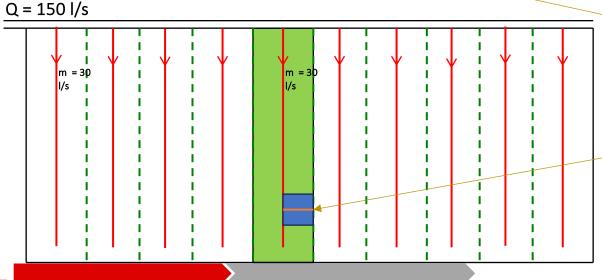

$$S' = \frac{m t}{B_p} = \frac{m}{q_p} \qquad q_p = \frac{B_p}{t}$$

Layout of the canals according to the surface area of the districts

Area of perimeter S: 100 ha ; Area of district S': 20 ha \rightarrow minimum 5 canals

Flow rate m of secondary canals: 30 l/s \rightarrow flow rate of main canal 150 l/s

Q = 150 l/s



Secondary canals

____ Limits of areas served by secondary canals

Surface area served by a secondary canal

5 Canals solution

Note: Districts can be further subdivided in N_p plots of surface S_p such that $S'=N_p$ S_p and served by tertiary canals

10 canals solution

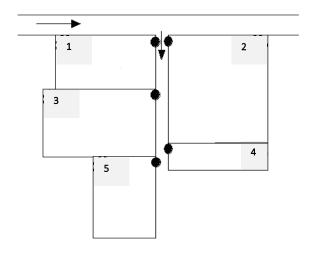
Distribution by rotation

Rotation R [days]: time interval between 2 successive waterings of the same

plot

$$R = \frac{J}{n}$$

J': total number of days in the period under consideration


n: number of irrigations

Water turnover T [hours]: effective irrigation time during one rotation

$$T = \frac{JN}{n}$$

J: number of days of irrigation

N: number of daily hours of irrigation

Distribution on demand

We learn about the so-called Clément's formula

Used to calculate the design flow rate of a pipe serving an area S equipped with n flow inlet with handling flowrate m

 Water needs are characterized by the fictitious continous flowrate during peak period, q:

$$\mathbf{q} = \frac{\mathbf{B_p}}{\mathbf{T'}} \qquad (m^3/s \text{ ha})$$

• It considers the irregular and non-permanent use of the network:

r: network temporal use efficiency,

$$r = \frac{T"}{T'} = \frac{dur\acute{e}e \ pr\acute{e}visible \ d'utilisation \ du \ r\acute{e}seau}{dur\acute{e}e \ totale \ de \ la \ p\acute{e}riode \ de \ pointe}$$

• It considers the mean flowrate of the canal Q' during the peak period :

$$Q' = \frac{q S}{r} = \frac{d\acute{e}bit \ de \ la \ p\acute{e}riode \ de \ pointe}{temps \ probable \ d'utilisation}$$

• Then, the mean number, s of inlets that function simultaneously is:

$$s = \frac{Q'}{m} = \frac{qS}{rm}$$

Distribution on demand

If the outlets are independent, sufficiently numerous and operate randomly, the design flow rate Q is given by Clément's formula:

Clément's formula

$$Q = Q' \left(1 + u \sqrt{\frac{1}{s} - \frac{1}{n}} \right)$$

Q': débit moyen de la conduite
$$Q' = \frac{q}{r}$$

s: nombre moyen de prises en fonctionnement simultané
$$\mathbf{s} = \frac{\mathbf{Q}}{\mathbf{m}}$$

n : nombre total de prises

u : paramètre caractérisant la qualité de fonctionnement du réseau

Prob. of satisfactory pipe operation

70%	0.525
80%	0.842
90%	1.282
95%	1.645
99%	2.324

Irrigation methods and techniques Gravity (furrow) Irrigation

Notion of irrigation perimeters

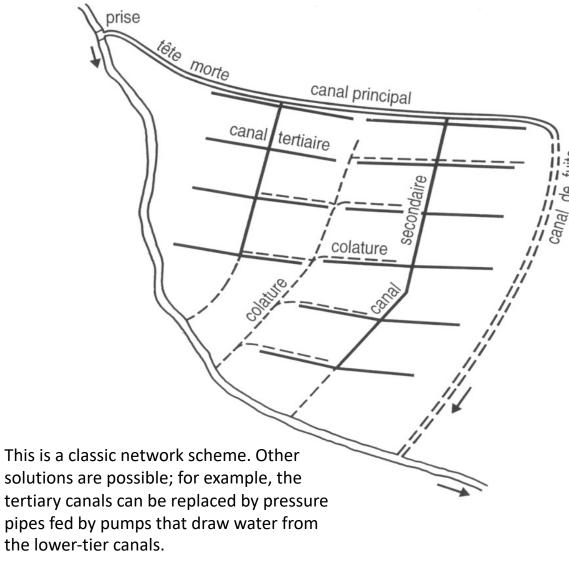
Dominant perimeter P_{dom}

Irrigated perimeter P_{ir}

$$P_{ir} = P_{dom} - not agric.$$
 Zones – ways and paths P_{gross}

Ways and path zones = 5 à 15 % of P_{gross}

$$P_{ir} = P_{gross} - 0.05 \text{ à } 0.15 P_{gross}$$


Equipped perimeter

General scheme of gravity irrigation network

Irrigation water supply

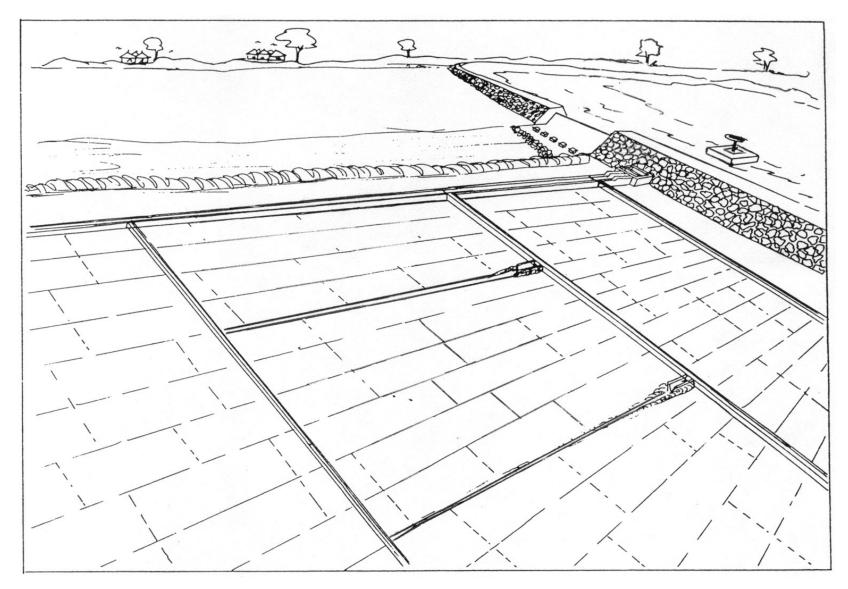
- Intake structures
- Deadhead
- Main, secondary, tertiary channels, etc.

Excess water removal

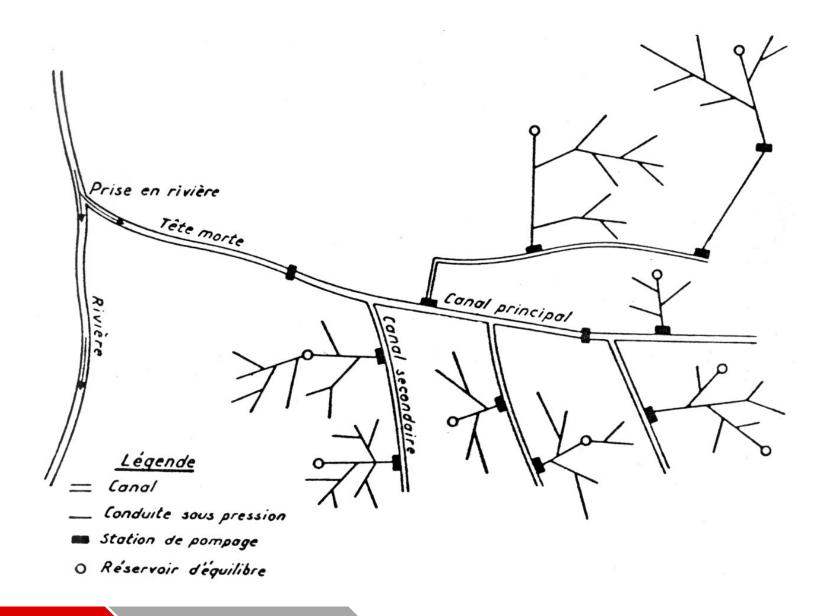
Tertiary, secondary,
 principal colatures, etc.

Access to structures and plots

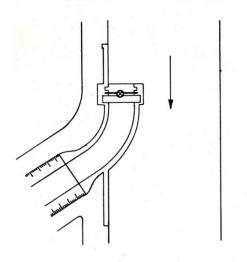
Roads and traffic lanes

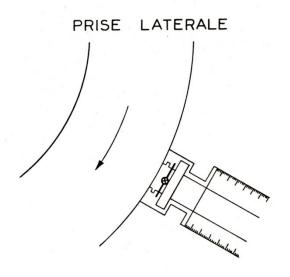

Perimeter security

Dykes, drainage ditches, etc.

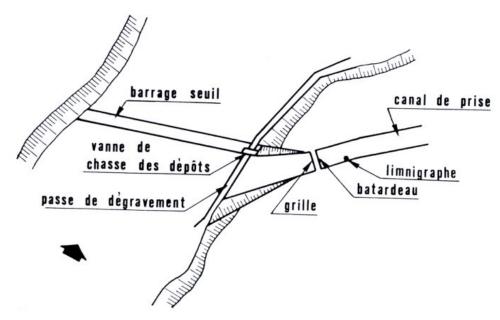

Gravity irrigation perimeter fed by artificial reservoir

Mixed gravity and pressurized irrigation network

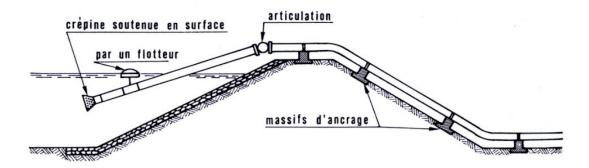


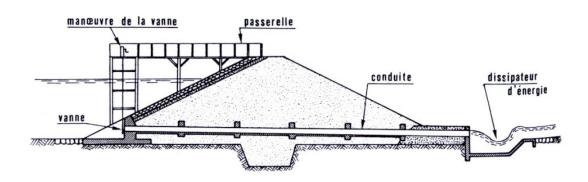


Example of water intakes from water course



PRISE FRONTALE

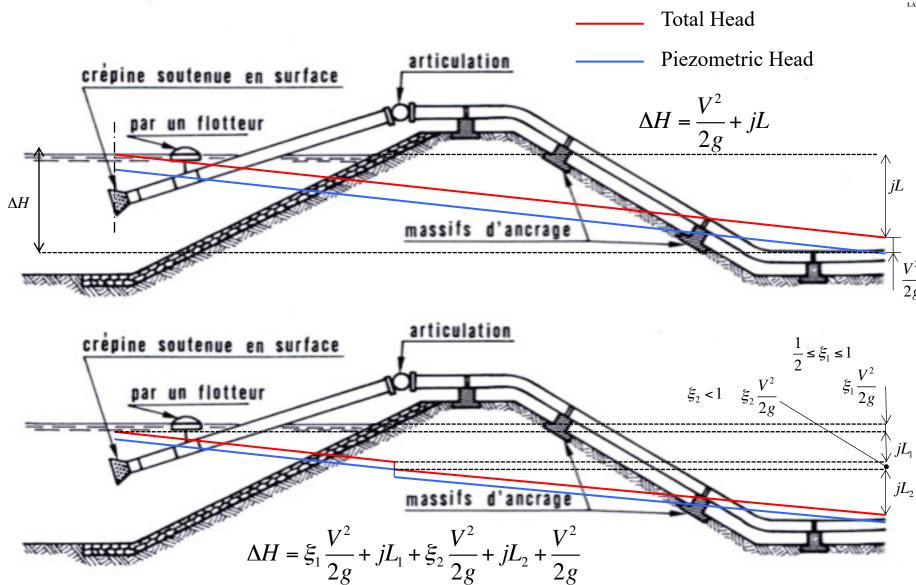




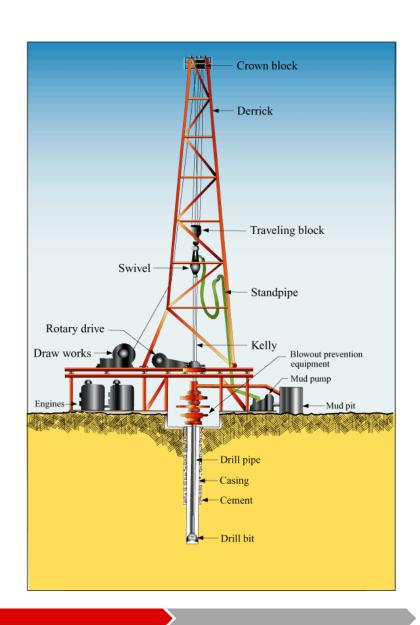
Stillwater intakes

Siphon

Intake via underground pipe



Intake tower, immersed in a reservoir. The tower has several intake openings and is connected to an adduction gallery.


Energy lines with and withour localized losses

Drilling boreholes to capture groundwater

Gravity network structures

linear

supply of irrigation water

✓ removal of excess water

✓ access to works and plots

perimeter security

(Topic of Lecture 2.3)

punctual

water regulation structures

flow distribution structures

✓ safety structures

crossing structures

✓ distribution paths and ways

(Topic of Lecture weeks 3)

